Produces a hierarchical clustering of the samples and assigns the provided annotations to the brances of the clustering tree. The clustering is based on the provided data matrix.
Version | 1.0 |
---|---|
Bundle | microarray |
Categories | Clustering |
Authors | Marko Laakso (Marko.Laakso@Helsinki.FI) |
Issue tracker | View/Report issues |
Source files | component.xml function.scala |
Usage | Example with default values |
Name | Type | Mandatory | Description |
---|---|---|---|
data | Matrix | Mandatory | Clustering data |
annotations | AnnotationTable | Mandatory | Sample annotations |
Name | Type | Description |
---|---|---|
originalPlot | Latex | Original clustering report |
annotPlot | Latex | Annotated clustering report |
splits | SetList | Details about the annotation assignments |
Name | Type | Default | Description |
---|---|---|---|
annots | string | (no default) | A comma separated list of annotation name=column pairs representing visible labels and the corresponding annotations columns selected for the annotations. |
maxP | float | 0.05 | P-value threshold to be used. |
minMI | float | 0.2 | The lower limit of the mutual information to be used. |
showLabel | boolean | true | Include sample labels to the output visualization. |
useNA | boolean | false | If true, the missing data (=NA values) is used also to calculate the MI and missing data can thus be enriched in the branches of the tree. If false, the random process to select a node uniformly random, which is used to define the MI, is modified in the way that a node with missing data cannot be selected. |
Test case | Parameters▼ | IN data |
IN annotations |
OUT originalPlot |
OUT annotPlot |
OUT splits |
---|---|---|---|---|---|---|
case1 | properties | data | annotations | (missing) | (missing) | splits |
annots = Tyyppi=type,class |
||||||
case2 | properties | data | annotations | (missing) | (missing) | splits |
annots = Tyyppi=type,class, |