
Anduril Maintenance Guide
February 27, 2015

Kristian Ovaska
Contact: kristian.ovaska@helsinki.fi

Contents
1 Introduction 1

2 Architecture 1

3 Component network 4

4 Workflow execution 7
4.1 Node states and the state file . 7
4.2 Network initialization and execution 9
4.3 switch-case statements . 12
4.4 @bind annotations . 12

5 AndurilScript parser 15
5.1 Symbol table . 15
5.2 Abstract syntax tree and conversion to network 16
5.3 Implementing functions . 18

6 Unit testing the engine 20
6.1 State initialization in various conditions 21
6.2 State initialization for disabled nodes 22
6.3 Network topology for nested functions 23
6.4 Network topology for empty functions 25
6.5 States in execution of switch-case statement 26
6.6 Error check testing . 28

6.6.1 Function definition . 28
6.6.2 Invoking components and functions 29

6.7 Other tests . 29

1 Introduction 1

1 Introduction

This document describes the internal behaviour of the Anduril workflow engine. The
document is intended for those maintaining the engine and interested in its design and
detailed architecture.

Section 2 provides an overview of the system and explains the relationships between
the AndurilScript parser, bundles, data models in workflows and the executing engine.
Section 3 introduces the structures and the key properties of the workflows as networks
of dependencies between the components. The execution of and the management of
these networks is discussed in Section 4. Section 5 about the configuration parser
is relevant for those implementing new features to AndurilScript. The last section is
highly recommended for all maintainers of Anduril as it tells how to use tests to confirm
that the system is working properly.

2 Architecture

High level architecture of Anduril is illustrated in Figures 1 and 2. Two central data
structures are component repository and component instance network (Section 3). The
repository stores static interfaces of components and associated data such as data types.
These are read from XML files by reader classes. The repository is used to create
HTML manual pages of components by manual writer classes. The component in-
stance network represent a workflow and contains references to the component reposi-
tory. The network is produced by AndurilScript parser from AndurilScript source code
(Section 5). The parser uses abstract syntax trees (ASTs) and a symbol table as an in-
termediate form. The network is executed by the execution engine (Section 4), which
also annotates component instances with dynamic state information, stored in a state
file. The network is thus a bridge between the parser and the execution engine. The
network is also visualized at runtime by the ConfigurationReport component that runs
inside the engine.

2 Architecture 2

Component
repository

AndurilScript
source Network

State &
output files

AndurilScript
parser

Execution
engine

AST &
symbol table

HTML
manual writer

parse

populate
intermediate

execute

Repository
reader

Figure 1: Flow of data in the Anduril framework. Ovals represent data structures and
rectangles represent executable subsystems.

2 Architecture 3

Figure 2: UML class diagram of the central structures of the Anduril engine. Network
is a cental class that is executed by the engine and created by the parser. Network is
a collection of ComponentInstance objects. Connections between component in-
stances are represented by subclasses of Connection; each connection has a start
point and an end point. The Repository class stores ”static” component interfaces.
Each Component object is a collection of input and output ports and simple parame-
ters. Components also have a launcher and a number of test cases. NetworkReader

is the gateway to AndurilScript parser. Behind the scenes, it uses ANTLR-derived
NetworkParser and NetworkFinalizer to populate and initialize a network. The
execution Engine executes a network with the help of ComponentExecutor, which
is a singleton monitor that governs worker threads implemented in ExecutorWorker.
The ExecutionDirectory class manipulates files in the execution directory.

3 Component network 4

3 Component network

A workflow is a directed acyclic graph (DAG) composed of interconnected component
instances, or nodes for short. Each node in the network is an instance of a specific
component and inherits the static interface of that component. Component interface is
defined by input and output ports and simple parameters.

The can be two types of connections between nodes in the network: dependency and
hierarchy connections. Of these, dependency connections are the defining feature of
workflows: they determine the structure of the DAG. A directed dependency edge
A→ B indicates that A must be executed before B. Dependency connections have two
subtypes, port connections and control connections. A port connection A.out → B.in
indicates that the output of port A.out is directed to the input of port B.in. Control
connections are ”pure” dependencies between nodes where the output of A is not (nec-
essarily) used in B. However, nodes may have both port and control connections, in
which case the control connections have no further effect on the dependency.

Definition. The directed dependency network N = (V,D) consists of the set of nodes
V and dependency edges D ⊂ V ×V . Nodes A and B have a dependency iff they have
one or more port or control connections.

Definition. When edge (A,B) ∈ D, A is the direct predecessor of B and B is the direct
successor of A. When then is a path from A to B, B is reachable from A and B depends
on A. Nodes having no incoming dependencies (in-degree 0) are source nodes. Nodes
having no outgoing dependencies (out-degree 0) are sink nodes.

Hierarchy connections are used to implement nested workflows, or functions in An-
durilScript. They are also used in switch-case statements. The dependency network
N is flat; the workflow engine does not care about the hierarchical structure of the
workflow when it is executing the network. In fact, it is easier to execute a flat net-
work. However, in some cases (e.g., workflow visualization), the structure must be
reconstructed. The hierarchical structure of nodes is stored in hierarchy connections.
This is a tree rather than a network. The tree is defined by parent-child links so that
P(A) = B if A belongs to function B (or branch node B). In function calls, the node B
representing the function is a virtual node: it is only a placeholder and is not executed.
Top-level nodes T have P(T) = /0.

Definition. When P(A) = B, B is the parent of A and A is an immediate child of B. The
set of all children of B are the immediate children and their children. The level L(A)≥ 0
denotes the position of node A in tree; it is the number of parents and grand-parents
that the node has. A node with L = 0 is a top-level node.

3 Component network 5

The network contains a Port Substitution Table (PST) that shows which ports of nested
nodes correspond to ports of the parent virtual node. Port substitutions of all virtual
nodes are present in the global PST. PST is used for those nested nodes that are the
entry and exit points of a function; nodes in between do not have entries in the PST.
Together with hierarchy links, PST allows to reconstruct the hierarchical structure. The
PST is a map from port connections to ports in virtual nodes. Effectively, a PST link is
an edge between a port connection and a port of a virtual node.

Dependency connections are allowed between non-virtual/non-virtual and virtual/virtual
nodes, but not between a non-virtual and a virtual node. Relationships between virtual
and non-virtual nodes are recorded in the PST. Dependencies between virtual nodes do
not affect network execution as virtual nodes are not executed; they are only used for
propagating @enabled=false annotations. See Section 6.4 for an example of this.

Figure 3 illustrates the dependency network and the hierarchy tree. On conceptual
level, y1 is connected to y2 and it does not see the nested nodes of y2. On actual
level, it is connected directly to y2-x1 and y2 is a virtual node. When the workflow
is visualized, only one level of nodes is shown at a time; in this view, only y1, y2 and
y3 are present on the top level. This structure can be reconstructed using the hierarchy
tree. The PST shows that y2-x1.in corresponds to y2.in because the connection
to y2.in in the conceptual level is routed to y2-x1.in in the actual view. Likewise,
y2-x3.out is mapped to y2.out. If node y3 were interested in the conceptual source
port of its incoming connection, it would query the PST and see that the connection is
mapped to the virtual port y2.out.

Port mapping is used to ensure that end points of port connections have compatible
types. In the example, y1.out must have type CSV or its subtype; it is not enough
to satisty the type of y2-x1, which may be a supertype of CSV. For instance, y2-x1
could be a fully generic component with no type restrictions.

3 Component network 6

(a)

function F(CSV in) -> (CSV out) {

x1 = SomeComp1(in)

x2 = SomeComp2(x1.out)

x3 = SomeComp3(x2.out)

return x3.out

}

y1 = SomeComp4()

y2 = F(y1.out)

y3 = SomeComp5(y2.out)

(b)

y1 y2-x1 y2-x2 y2-x3 y3

y2

(c) y2-x1y1 y2-x2 y2-x3 y3

y2
virtual

(d) y2-x1

y1

y2-x2 y2-x3

y3y2

(e)
Connection ToNode ToPort Type
y1.out => y2-x1.in y2 in in-port
y2-x3.out => y3.in y2 out out-port

Figure 3: (a) Example AndurilScript program. It is assumed that all components
have one input port named in and one output port named out. (b) Conceptual view of
the workflow. Nested nodes are named as P(X)-X, where X is the node in question and
P(X) is the name of the parent node. (c) Actual view showing dependency edges (solid)
and hierarchy edges (dotted). The y2 node is a virtual placeholder that represents a call
to function F. (d) Hierarchy tree of the workflow, illustrating parent nodes. Levels of
y1, y2 and y3 are 0; children of y2 are on level 1. (e) Port Substitution Table of the
network. Note that in-ports are always substituted with in-ports and out-ports with
out-ports.

4 Workflow execution 7

4 Workflow execution

The workflow is executed by launching component instances in any order permitted
by dependencies. Only those nodes whose configuration has changed since the last
successful execution are re-executed, unless --force or @execute=always is given.
The execution engine only considers dependency edges (D), not hierarchy links.

4.1 Node states and the state file

The execution engine maintains a dynamic state for each node that indicates whether
the node has been executed, is waiting to be executed, or is inactivated. The state can
be divided into two independent aspects: is the node up-to-date (U) and is it active (A).
The state variables are described in Table 1. The state is a pair (U,A), with a total of
2×3= 6 combinations. The state A = DISABLED implements @enabled=false. The
state A = SUSPENDED is used in switch–case constructs to suspend non-selected
nodes until the branch is executed again. Suspended nodes can not be disabled because
this would un-suspend them implicitly: if a suspended node has @enabled=false, its
A state remains SUSPENDED. Legal state transitions are listed in Table 2.

States is stored in the state file located in the execution directory, to be read by the
engine on the next run. Only some aspects of state need to be stored. For each node, it
is recorded whether U is YES or NO and whether A is YES or SUSPENDED. The state
A = DISABLED is not stored because it is a temporary state. If the @enabled=false
annotation is removed, the node resets back to A = YES. A configuration digest of each

Variable Value Description
U YES The node has been successfully executed since the last configu-

ration modification. Output files may or may not be present on
disk; this is checked by the engine at runtime.

U NO Configuration has changed since the last successful execution,
or all execution attempts have failed after configuration was
changed, or this is a novel node that has never been executed.

A YES The node is active on this run and should be executed if U = NO.
A DISABLED The node is temporarily disabled on this run and must not be

executed. On next run, the node is by default active. The node
must be explicitly disabled on each run to keep it inactive.

A SUSPENDED The node is permanently inactive and must be explicitly re-
activated in order to return it to execution.

Table 1: State variables of nodes. U describes whether the node is up-to-date and A
whether it is active.

4.1 Node states and the state file 8

Var. From To Description
U - NO A novel node has not been executed.
U NO YES The node is successfully executed.
U YES NO Configuration of the node or any of its an-

cestors has been changed, or the user forced
execution with --force, or the node has
@execute=always. If @execute=once, the
state is not changed. Transition also happens
when output files are missing and immediate
successor needs to be executed.

A - YES A novel node is initially active.
A YES DISABLED The active node has disabled=true annota-

tion on this run.
A DISABLED YES Disabled nodes are reset back to active at the

end of network execution.
A YES, DISABLED SUSPENDED The node is part of a switch-case structure and

the branch node did not select this choice.
A SUSPENDED YES, DIS-

ABLED
The branch node begins re-execution and first
sets all choice nodes to non-suspension. Nodes
that have disabled=true on this run are set
to DISABLED.

Table 2: State transitions.

node is also stored in the state file. This is a string encoding relevant information on
the configuration and allows to observe which nodes have changed.

Annotations that disable nodes (@enabled=false) are propagated to child nodes and
immediate successors nodes if port connections to mandatory in-ports are present.
When node n is disabled, it recursively sets @enabled=false for all child nodes and
all immediate successors for which n has a port connection to a mandatory in-port. If
only control connections or port connections to optional in-ports are present, the im-
mediate successor is not disabled. A disabled branch node also disables all choice and
join nodes.

4.2 Network initialization and execution 9

4.2 Network initialization and execution

Algorithm 1 specifies how node states are initialized before execution. In lines 35–43,
the network is iterated from sink nodes to source nodes (following edges backwards)
and nodes n with missing output files are handled. If immediate successors of n need
to be executed, n must also be executed.

Algorithm 2 is used to execute the network. This algorithm is single-threaded; the
multi-threaded version is similar but parallelizes the central while loop. The engine
maintains four data structures in addition to node states: PRECOUNT, POSTCOUNT,
READY and FAILED. The first three of these structures contain only information that
could be deduced from node states; their purpose is to make network execution efficient
by keeping the state information in a convenient format.

PRECOUNT is a map from nodes to integers that indicates how many immediate pre-
decessors of each node are awaiting execution, i.e., have U = NO and A = YES. A
node can only be executed when its PRECOUNT is 0. POSTCOUNT is a similar map
for immediate successors. The key in this map is (node, output port). It is used to
implement disk space optimization. When POSTCOUNT(n, P) reaches 0, the output
files of port P of node n can be deleted if n is marked for disk space optimization. The
READY priority queue maintains nodes that are ready for execution. A node n belongs
to READY if and only if U(n) = NO and A(n) = YES and PRECOUNT(n) = 0 (and it
has not been executed already). That it, the node is not up-to-date, is marked active,
and results of all active predecessors are available. Nodes whose execution has failed
are stored in the FAILED set; they have U = NO. The engine summarizes failed nodes
at the end of network execution.

4.2 Network initialization and execution 10

Algorithm 1 Initializing network state prior to execution. ALWAYS(n) and ONCE(n)
denote that node n has @execute=always or @execute=once, respectively. When
computing nodes reachable from a certain node, only active (A=YES) nodes are con-
sidered.

1: for all nodes n do
2: U(n) = NO
3: if n has @enabled=false ∨ n is virtual then
4: A(n) = DISABLED
5: else
6: A(n) = YES
7: end if
8: end for
9:

10: CHANGED← /0
11:
12: // Read state file (optional)
13: for all nodes n in state file do
14: if stored A(n) = SUSPENDED in state file then
15: A(n)← SUSPENDED
16: end if
17: end for
18: for all nodes n in state file do
19: if (configuration of n has changed ∧ ¬ ONCE(n)) ∨ ALWAYS(n) then
20: CHANGED← CHANGED ∪ (n and nodes reachable from n)
21: else if stored U(n) = YES in state file then
22: U(n)← YES
23: end if
24: end for
25:
26: // Handle --forced nodes (optional)
27: for all nodes n set to forced execution do
28: CHANGED← CHANGED ∪ (n and nodes reachable from n)
29: CHANGED← CHANGED ∪ (children of n)
30: end for
31:
32: for all nodes n in CHANGED do
33: if ¬ (ONCE(n) ∧ U(n) = YES) then
34: U(n)← NO
35: end if
36: end for
37: for all nodes n having U(n) = YES, in depth-first order starting from sinks do
38: if any output file of n is missing then
39: if any immediate successor has U=NO and A=YES then
40: U(n)← NO
41: end if
42: end if
43: end for

4.2 Network initialization and execution 11

Algorithm 2 Executing the network. OPTSPACE(n) indicates that node n is marked
for disk space optimization.

1: PRECOUNT(n)← 0 for all nodes n
2: POSTCOUNT(n, P)← 0 for all nodes n and out-ports P
3: READY← /0
4: FAILED← /0
5: for all nodes n do
6: if U(n) = NO ∧ A(n) = YES then
7: for all direct successors s do
8: PRECOUNT(s)← PRECOUNT(s) + 1
9: end for

10: end if
11: for all incoming port connections C do
12: f := C. f romNode; P := C. f romPort;
13: POSTCOUNT(f , P)← POSTCOUNT(f , P) + 1
14: end for
15: end for
16: for all nodes n do
17: if PRECOUNT(n) = 0 ∧ U(n) = NO ∧ A(n) = YES then
18: READY← READY ∪ n
19: end if
20: end for
21:
22: while READY 6= /0 do
23: n← pop node from READY according to priority
24: execute n
25: if n executed successfully then
26: U(n)← YES
27: if OPTSPACE(n) ∧ n is sink node then
28: delete output files of n
29: end if
30: update state file
31: for all direct successors s do
32: PRECOUNT(s)← PRECOUNT(s) - 1
33: if PRECOUNT(s) = 0 ∧ U(s) = NO ∧ A(s) = YES then
34: READY← READY ∪ s
35: end if
36: end for
37: else
38: FAILED← FAILED ∪ n
39: if OPTSPACE(n) then
40: delete output files of n
41: end if
42: end if
43: for all incoming port connections C do
44: f := C. f romNode; P := C. f romPort;
45: POSTCOUNT(f , P)← POSTCOUNT(f , P) - 1
46: if POSTCOUNT(f , P) = 0 ∧ U(f) = YES ∧ OPTSPACE(f) then
47: delete output files for f .P
48: end if
49: end for
50: end while

4.3 switch-case statements 12

4.3 switch-case statements

Switch-case statements are executed dynamically so that a special branch component
determines which choices are enabled for execution. A join node ends the branch.
Figure 4 contains an example of this structure. Choice nodes are children of the branch
nodes. In this example, abbreviated names of choice names are shown (i.e., c2-x1
instead of branch-c2-x1).

When the network begins execution, PRECOUNT(join) = 3 at first. The branch node
is executed using a special ComponentInstance subclass that first executes the actual
code (e.g., R code) similar to regular components, and then it suspends nodes that
belong to non-selected choices. The executable code returns a set of enabled choices
in a special output port. In this case, possible choices are c1 and c2; it is also possible
to select both. If c1 is selected and c2 is not, the branch node sets A = YES for
c1 and A = SUSPENDED for all c2 nodes, with the aid of its data structures. The
execution engine provides facilities for modifying node states during runtime. When
the engine sets A(c2-x3) to SUSPENDED, it also decrements PRECOUNT(join) to
2. Now branch exits and PRECOUNT(join) is further decremented to 1. Node c1

is executed, which enables the execution of join, ending the branch. Output of the
switch-case structure can be accessed using the join node; it is a normal component,
visible to the rest of the network. Choice nodes (c1 and c2*) are not visible to the rest
of the network; they reside in their own namespace, only visible to the branch and join
components.

4.4 @bind annotations

Manual dependencies may be assigned between components using @bind annotations.
The annotations are implemented using control connections. Figure 5 shows an exam-
ple. The simplest, and fully functional, implementation is to include control connection
from between all node pairs (A,B), where A appears in source set that has been assigned
for the B. An optimized version considers existing port and control connections and
adds only control connections between node pairs that are otherwise not connected.

4.4 @bind annotations 13

(a)

function F(CSV in) -> (CSV out) {

x1 = SomeComp1(in)

x2 = SomeComp2(x1.out)

x3 = SomeComp3(x2.out)

return x3.out

}

input = SomeComp4()

branch = BranchComponent()

join = switch branch {

case c1 = SompComp5()

case c2 = F(input)

return JoinComponent(c1.out, c2.out)

}

(b)

branch

virtual

c1

c2-x1 c2-x2 c2-x3
join

input c2

(c)

branch

c1

c2-x1 c2-x2 c2-x3

joininput

c2

Figure 4: Example of a switch-case structure. (a) AndurilScript code for the struc-
ture. (b) The corresponding node network. The branch node has control connections
(blue dashed) to all choice nodes (except virtual ones) and the join node. The control
connection to the join node prevents execution of the join node before the branch node
if outputs of the choices are not routed to the join node. The branch node maintains
data structures that hold the set of nodes for each choice (circles). In this case, the set
of nodes for choice c1 is {c1} and for choice c2 it is {c2, c2-x1, c2-x2, c2-x3}.
Hierarchy links are shown with dotted black lines. (c) Hierarchy tree.

4.4 @bind annotations 14

(a)

function F() -> (CSV out) {

x1 = SomeComp1()

x2 = SomeComp2(x1.out)

x3 = SomeComp3(x2.out)

return x3.out

}

y1 = F()

y2 = F(@bind=y1)

(b)

y1-x1 y1-x2 y1-x3

y2-x1 y2-x2 y2-x3

y1
virtual

y2
virtual (c)

y1-x1 y1-x2 y1-x3

y2-x1 y2-x2 y2-x3

y1
virtual

y2
virtual

Figure 5: Example of an @bind annotation. (a) AndurilScript code for the structure.
(b) The corresponding node network. Blue dashed lines are control connections and
black dotted lines are hierarchy links. (c) Optimized node network.

5 AndurilScript parser 15

5 AndurilScript parser

Reading AndurilScripts into an executable format consists of two phases: (1) parsing,
which creates an abstract syntax tree (AST) and (2) converting the AST into a network
data structure. Parsing is done using the ANTLR library. The parser defines the syntax
of AndurilScript. The AST is a high-level representation of the syntactic features of
AndurilScript code. The AST is accompanied by a symbol table that holds information
on entities that can be referred to by name, such as functions and component instances.

5.1 Symbol table

The symbol table stores contents of namespaces, or scopes. Each scope contains a
number of named symbols that can refer to components, functions, records, out-ports or
simple values (numbers, strings and Booleans). Scopes define the visibility of symbols.
All symbols that belong to the same scope are visible in the same context. Scopes may
be nested so if a name is not found in the current scope, the parent scope is examined
in turn. A scope is defined by (1) a numeric scope ID, (2) ID of parent scope, if any,
and (3) the set of symbols in the scope. A symbol is defined by name, type and value.
Values are stored in classes that implement the Value interface; each type has its own
value class.

Symbol types include COMPONENT, FUNCTION, RECORD, PORT, INT, FLOAT,
BOOLEAN, STRING and NONE. A symbol of type COMPONENT has a value that
is an instance of the Component class. Function references of type FUNCTION are
defined as (1) the AST nodes that hold the syntactic structure of the function and (2)
parent scope ID of the function. These items are encapsulated into FunctionValue

objects. Simple values (numbers, Booleans and strings) are stored using types INT,
FLOAT, BOOLEAN and STRING.

Records (type RECORD) are collections of key-value pairs and are implemented us-
ing map data structures. Records do not use the symbol table, although both contain
key-value pairs: records are more general because they allow other key types than
strings. Also, records do not implement hierarchical name spaces like the symbol ta-
ble. Records that correspond to the output of a component instance hold a reference to
the instance.

References to output ports of component instances in the network are stored in PORT
symbols. They hold (1) a reference to the component instance (ComponentInstance)
and (2) the specific output port (OutPort). These are encapsulated into the PortValue
class.

5.2 Abstract syntax tree and conversion to network 16

Figure 6 contains an example AndurilScript program and the corresponding symbol
table. The example illustrates that all function calls in AndurilScript are expanded,
or inlined, into the main program. The global scope (ID=1) contains references to all
available components, although only two are shown in the simplified example. Also,
environment variables are imported into their own scope as strings so that they can be
referred to as $NAME; this scope is not the parent of any other scope.

Not all names that can be referenced in AndurilScript need to be part of the symbol
table. Data types (e.g., CSV in the example) are not present in the symbol table because
they are used in a specific context (function definitions) and can be looked up explicitly
in this context. Same holds for input ports and parameters of components.

5.2 Abstract syntax tree and conversion to network

Nodes in the AST are represented as instances of ASTNode. Subclasses of ASTNode
represent syntactic structures of AndurilScript; each type of syntactic structure has its
own ASTNode subclass. The final AST structure is a hierarchy of objects of different
ASTNode subclasses.

Each AST node contains information of parent and child nodes (if any), source code
location and the set of component instances that are created using the specific AST
node. Most AST nodes are also instances of Expression; expressions have a type
and a value. For example, "abc" is a LiteralExpression with type STRING and
value "abc". As another example, 2.5+x is an ArithmeticExpression composed
of two sub-expressions and an operator. The value and type of arithmetic expressions
depend on its operands and are resolved when the AST is evaluated. Large syntactic
structures are instances of Statement. In general, anything that can (syntactically)
form a valid AndurilScript program when used alone is a statement. The most impor-
tant statement is AssignmentStatement that is defined by a name and an expression.
When evaluated, the value of the expression is inserted into the symbol table.

AndurilScript is parsed one top-level statement at a time. In Figure 6, there a five top-
level statements. First, an AST is constructed that encapsulates the syntax of the state-
ment. AST construction is done in the constructors of ASTNode subclasses. Then, the
AST corresponding to the statement is evaluated using ASTNode.evaluate(Symbol-

Table, Network). Evaluation updates the given network by adding new nodes or
connections, or updates the symbol table by adding new symbols. Parsing then pro-
ceeds to the next top-level statement. When all statements have been evaluated, the
textual representation of AndurilScript has been transformed into a network data struc-
ture using AST as an intermediate.

5.2 Abstract syntax tree and conversion to network 17

x1 = Randomizer(columns=5, rows=5)

function F(CSV in1, optional CSV in2, float f) -> (CSV out1, CSV out2) {

rec = record(myfield=in1)

result = CSVFilter(rec.myfield)

if (in2 == null) myfloat = f + 5

return record(out1=result.csv, out2=in1)

}

x2 = CSVFilter(x1.matrix)

x3 = F(x2.csv, f=3.2)

x4 = x3.out1

x1 = Randomizer(columns=5, rows=5)

x2 = CSVFilter(x1.matrix)

{

in1 = x2.csv

in2 = null

f = 3.2

rec = record(myfield=in1)

result = CSVFilter(rec.myfield)

if (in2 == null) myfloat = f + 5

EXPORT x3 = record(out1=result.csv, out2=in1)

}

x4 = x3.out1

Scope Parent Symbol Type Value
1 - Randomizer COMPONENT Component: Randomizer
1 - CSVFilter COMPONENT Component: CSVFilter
2 1 x1 RECORD RecordValue: matrix (x1)
2 1 F FUNCTION FunctionValue: F, parent=2
2 1 x2 RECORD RecordValue: csv (x2)
3 2 in1 PORT PortValue: x2.csv
3 2 in2 NULL null
3 2 f FLOAT 3.2
3 2 rec RECORD RecordValue: myfield
3 2 result RECORD RecordValue: csv (x3-result)
3 2 myfloat FLOAT 8.2
2 1 x3 RECORD RecordValue: out1, out2 (x3)
2 1 x4 PORT PortValue: x3-result.csv

Figure 6: Top: AndurilScript program. Middle: Pseudo code that shows how function
calls are expanded (inlined) into the main program. Here, { } denote scope definition
and EXPORT denotes inserting a symbol to the parent scope. The output of the function
is exported to the main scope, while local variables inside the function are not. Bottom:
Symbol table for the program, in the order that symbols are created.

5.3 Implementing functions 18

Before the network can be executed by the engine, it needs to be finalized using
NetworkFinalizer. Finalization performs modifications and error checking tasks
that are not handled by the parser. For example, type parameters of generic compo-
nents are inferred by the finalizer. See API documentation of NetworkFinalizer for
details on the transformations.

5.3 Implementing functions

How function calls are implemented at AST-level is shown in Algorithm 3. The ma-
jority of the code is located in CallExpression which evaluates a stored Function-

Value instance. Local variables of the inlined function call, as well as function param-
eters, are stored into temporary scope LOCAL; results of the function call are stored in
RESULT , which is a record that the function call defines. The symbol table maintains
a call stack where each function call is represented by a CallStackElement object.
When the body contains a ReturnStatement, the statement finds the result record
(RESULT) using the call stack and inserts returned values into that record. Lines pre-
fixed with ReturnStatement: are located in the ReturnStatement class.

5.3 Implementing functions 19

Algorithm 3 Implementing function calls in AST.
1: AST := current CallExpression AST node
2: n← new virtual component instance
3: add new namespace LOCAL to symbol table (parent=FunctionValue.parent)
4: RESULT ← new record value
5: add n to network
6: add RESULT to symbol table with type RECORD
7:
8: for all parameters p of function do
9: insert symbol p into LOCAL; value is from call expression or function default

10: end for
11: for all in-ports i of function do
12: insert symbol i into LOCAL as PortValue; value is from call expression or null
13: end for
14:
15: push (AST , RESULT) to call stack
16: push LOCAL into current namespace stack
17:
18: for all statements s in body do
19: recursively evaluate s
20: if evaluating a ReturnStatement then
21: ReturnStatement: (RAST , RRESULT)← top of call stack
22: for all fields f in return record do
23: ReturnStatement: insert symbol f into RRESULT
24: end for
25: interrupt evaluation of body
26: end if
27: end for
28:
29: pop LOCAL from current namespace stack
30: pop (AST , RESULT) from call stack

6 Unit testing the engine 20

6 Unit testing the engine

Unit tests are executed inside the core and have access to network and engine data struc-
tures. Unit tests supplement regular test networks by enabling more detailed validation
of engine and network functionality. On the other hand, their construction and running
requires writing Java code, which makes implementing them more tedious than regular
test networks. The code is located in the core package .core.unittest. Unit tests
are executed with anduril unittest. This section documents the central unit tests.

The unit test system uses only components and data types from a specific bundle, techt-
est, that has been constructed to support unit testing. The components in the bundle do
not have any ”real” analysis functionality. Data types and components in techtest and
shown in Figure 7 and Table 3. All components (except C4) can be set to fail with
the fail parameter. The dummy parameter is used to change configuration digest. The
delay parameter enables timing testing. The components write valid but dummy out-
put to their output ports. C3 is a branch component with two choices, c1 and c2. Which
choices are enabled is controlled with Boolean enable1 and enable2 parameters.

A

B C

D

E

Figure 7: Data type hierarchy in the techtest bundle.

Name Inputs Outputs Parameters Notes
C1 in1 (T, optional) out1 (T) fail=false (boolean),

dummy=0 (int), delay=0
(float)

Type parameter T

C2 in1 (B), in2–in5 (B,
optional)

out1 (B) See C1 Same parameters as C1;
mandatory port

C3 in1–in5 (B, op-
tional)

out1 (B) See C1 & enable1=true
(boolean), enable2=true
(boolean)

Branch component

C4 in1 (B), in2 (E, op-
tional)

out1 (B), out2 (E) p1=0 (int), p2 (float) Used in 6.6

Table 3: Components in the techtest bundle

6.1 State initialization in various conditions 21

6.1 State initialization in various conditions

Method: StateInitTest.testStateInitialization
Engine state initialization is tested with a very simple network consisting of two nodes,
a and b, so that a→ b. The network is executed two times and up-to-date states right
before the second execution are inspected. This is done after the state file has been read
and the engine is ready for execution. Node attributes are manipulated so that different
scenarios are simulated. Manipulations are:

• b.fail1: b fails at first execution

• a.changed2: configuration of a changes in second execution

• b.changed2: configuration of b changes in second execution

• a.keep: a is marked/not marked for space optimization in both executions

• b.execute: the @execute annotation of b is set to different values in both execu-
tions

Expected values of U(a) (top) and U(b) (bottom) at the beginning of second execution
are shown below. Asterisk (?) denotes any value.

b.fail1 a.changed2 b.changed2 a.keep b.execute U(a, 2)
? yes ? ? ? NO
yes ? ? no ? NO
? ? yes no ? NO
? ? ? no always NO
no ? ? no changed YES
no ? ? no once YES
no ? yes no always NO
no ? yes no changed NO
no ? yes no once YES
? no ? yes ? YES

b.fail1 a.changed2 b.changed2 a.keep b.execute U(b, 2)
no no no ? always NO
no no no ? changed YES
no no no ? once YES
no no yes ? always NO
no no yes ? changed NO
no no yes ? once YES
no yes ? ? always NO
no yes ? ? changed NO
no yes ? ? once YES
yes ? ? ? ? NO

6.2 State initialization for disabled nodes 22

6.2 State initialization for disabled nodes

Method: StateInitTest.testDisabled
State initialization with @enabled annotations are tested with a network consisting of
a single node. The network is executed three times and state at the beginning of second
(S2) and third (S3) executions are inspected. Here, S(n) denotes the combined state
U(n)/A(n). The node is manipulated as follows: disabled on first run (disabled1);
disabled on second run (disabled2); configuration changed in second run (changed2).
Expected states are as follows.

disabled1 disabled2 changed2 S2 S3
no no no YES/YES YES/YES
no no yes NO/YES YES/YES
no yes no YES/DISABLED YES/YES
no yes yes NO/DISABLED NO/YES
yes no ? NO/YES YES/YES
yes yes ? NO/DISABLED NO/YES

6.3 Network topology for nested functions 23

6.3 Network topology for nested functions

Method: TopologyTest.testNestedFunctions
The network below tests that connections, parent links and the Port Substitution Table
are correct for a network that contains nested functions two levels deep. This network
is not executed. The network contains links between nodes on different levels (levels
0→ 0, 0→ 1, 0→ 2, 1→ 2, 2→ 0 and 2→ 1). There is also a node (x1) that is used
in a function without being routed through a port. Inside F1, output ports of body1 and
body2 are referenced without explicit port name, while explicit port names are given
in x4 and x5.

Test network:

x1 = C1()
function F1(B in1) -> (B out1, B out2) {

body1 = C2(in1)
body2 = F2(body1)
body3 = C2(body2)
return record(out2=body2, out1=in1)

}
function F2(B in1) -> (B out1) {

body = C2(in1, x1)
return body.out1

}
x2 = C1()
x3 = F1(x2, @execute="once")
x4 = F2(x3.out2)
x5 = C2(in2=x3.out2, in1=x3.out1)

Expected network topology. Solid lines are port connections and dashed lines are par-
ent links.

x1

x2

x3-body1

x3-body2

x3-body2-body x3-body3

x3

x4-body

x5

x4

virtual virtual

virtual

6.3 Network topology for nested functions 24

Expected Port Substitution Table:

Connection ToNode ToPort Type
x2.out1 => x3-body1.in1 x3 in1 in-port
x2.out1 => x5.in1 x3 in1 in-port
x3-body1.ou1 => x3-body2-body.in1 x3-body2 in1 in-port
x3-body2-body.out1 => x4-body.in1 x4 in1 in-port
x2.out1 => x5.in1 x3 out1 out-port
x3-body2-body.out1 => x3-body3.in1 x3-body2 out1 out-port
x3-body2-body.out1 => x4-body.in1 x3 out2 out-port
x3-body2-body.out1 => x5.in1 x3 out2 out-port

Method: TopologyTest.testNestedFunctionsAnnotations
After basic topology has been validated, a second test is performed where x2 is disabled
by setting @enabled=false. Together with the @execute annotation of x3, these test
that annotations are propagated correctly. Expected annotations are in the following
table.

Node @enabled @execute
x1 true changed
x2 false changed
x3 false once
x3-body1 false once
x3-body2 false once
x3-body2-body false once
x3-body3 false once
x4 false changed
x4-body false changed
x5 false changed

Notice that disabling x2 disables all nodes except x1, including the virtual nodes, even
though there is no path from x2 to any virtual node (parent links are followed back-
wards in disable propagation). The engine uses the PST to disable virtual nodes as it
observes that the connection x2.out1 => x3-body1.in1 has a substitution for the
port x3.in1, which leads to disabling x3 and its children as well as x4. Disabling
virtual nodes does not have a sematic effect in this network, but it is important when
a function contains a node that does not depend on other nodes in the network; it is
disabled through the parent link.

6.4 Network topology for empty functions 25

6.4 Network topology for empty functions

Method: TopologyTest.testEmptyFunctions
The following network tests a sequence of empty functions with no body. The network
is not executed. Notice that x3 is not present in the PST because it only has connections
with other virtual nodes. Top: Test network. Middle: Expected network topology. Note
that there are no parent links. Bottom: Expected Port Substitution Table.

function Empty(B in) -> (B out) {
return in

}
x1 = C1()
x2 = Empty(x1)
x3 = Empty(x2.out, @enabled=false)
x4 = Empty(x3.out)
x5 = C2(x4.out)

x1 x5

x2 x3 x4

virtual virtual virtual

Connection ToNode ToPort Type
x1.out1 => x5.in1 x2 in in-port
x1.out1 => x5.in1 x4 out out-port

This network also tests that @enabled=false annotations are propagated correctly. Con-
nections between virtual nodes are elementary for correct propagation in this network.
Expected annotations are as follows.

Node @enabled
x1 true
x2 true
x3 false
x4 false
x5 false

6.5 States in execution of switch-case statement 26

6.5 States in execution of switch-case statement

Method: BranchTest.testTopology and BranchTest.testDynamic

The following network tests the dynamics of switch-case statements. The network
is executed several times and manipulated between rounds. The state of the previous
round is used to initialize the next round. State of nodes are inspected at the beginning
and end of each execution round.

Test network:

function F1(B in) -> (B out) {
body1 = C2(in)
body2 = C2(body1.out1)
return record(out=body2.out1)

}
input = C1()
branch = C3()
join = switch (branch) {
case c1 = C1()
case c2 = F1(input)
return C2(c1.out1, c2.out)

}
post = C2(join.out1)

Expected network topology. Control connections are shown with blue lines. Note that
branch is a parent of c1 and c2; full names of the choice nodes start with ”branch-”
but abbreviated names are shown.

c2

c1

branch

c2-body1 c2-body2

input

join

virtual

post

6.5 States in execution of switch-case statement 27

Expected states are as follows. E=c1 denotes that choice c1 is enabled by the branch
node. S(c2?) denotes states of c2-body1 and c2-body2 but the state of c2 itself is not
checked for simplicity.

Manipulation State (begin) State (end)
1 Novel network, E=c1 S(?)=NO/YES S(c2?)=NO/SUSPENDED,

S(other)=YES/YES
2 No change S(c2?)=NO/SUSPENDED,

S(other)=YES/YES
S(c2?)=NO/SUSPENDED,
S(other)=YES/YES

3 Conf. changed: input S(input)=NO/YES,
S(c2?)=NO/SUSPENDED,
S(other)=YES/YES

S(c2?)=NO/SUSPENDED,
S(other)=YES/YES

4 Conf. changed: c1 S(c1,join,post)=NO/YES,
S(c2?)=NO/SUSPENDED,
S(other)=YES/YES

S(c2?)=NO/SUSPENDED,
S(other)=YES/YES

5 E=c2 S(branch)=NO/YES,
S(c2?)=NO/SUSPENDED,
S(c1,join,post)=NO/YES,
S(other)=YES/YES

S(c1)=NO/SUSPENDED,
S(other)=YES/YES

6 Conf. changed: input S(input,c2?,join,post)=NO/YES,
S(c1)=NO/SUSPENDED,
S(other)=YES/YES

S(c1)=NO/SUSPENDED,
S(other)=YES/YES

7 Conf. changed: c1 S(c1)=NO/SUSPENDED,
S(other)=YES/YES

S(c1)=NO/SUSPENDED,
S(other)=YES/YES

8 E=c1,c2 S(input)=YES/YES,
S(c1)=NO/SUSPENDED,
S(other)=NO/YES

S(all)=YES/YES

6.6 Error check testing 28

6.6 Error check testing

The following unit tests ensure that incorrect AndurilScript code is recognized and
an error message is given. The error message must be attached to the network data
structure; the parser must not crash.

6.6.1 Function definition

Method: ErrorCheckTest.testFunctionDefinition
Various possible errors in function definition are tested with the following test cases.
The tests are based on the following simple network, that is modified by the test cases
by introducing errors. There is one error in each test case.

function F(B in1, optional E in2, int p1, float p2=0)
-> (B out1, E out2)

{ return record(out1=in1, out2=in2) }
x1 = C1() // Type parameter T gets value B
x2 = C1() // Type parameter T gets value E
x3 = F(x1, x2, p1=5)
x4 = C2(x3.out1)

Introduced errors are as follows:

Error description Code
Optional in-port before manda-
tory in-port

function F(optional E in2, B in1, int p1, float p2=0)

Parameter before ports function F(int p1, B in1, optional E in2, float p2=0)

Two in-ports with same name function F(B in1, optional B in1, int p1, float p2=0)

Two parameters with same
name

function F(B in1, optional E in2, int p1, float p1=0)

Two out-ports with same name -> (B out1, B out1, E out2)

Default expression with invalid
type

function F(B in1, optional E in2, int p1, float p2="abc")

Default expression for in-port function F(B in1, optional E in2=5, int p1, float p2=0)

Optional parameter function F(B in1, optional E in2, int p1, optional float p2=0)

Optional out-port -> (B out1, optional B out2)

Invalid in-port type function F(NotFound in1, optional E in2, int p1, float p2=0)

Invalid out-port type -> (NotFound out1, B out2)

Elementary type for out-port -> (B out1, int out2)

Missing entry in return record { return record(out1=in1) }

Extra entry in return record { return record(out1=in1, out2=in2, extra=in1) }

Invalid type in return record { return record(out1=in2, out2=in1) }

Invalid name in return record { return record(x=in2, y=in1) }

Elementary type in return
record

{ return record(out1=in2, out2=5) }

6.7 Other tests 29

6.6.2 Invoking components and functions

Method: ErrorCheckTest.testInvoke
Following tests introduce errors into component or function invocation. Test network
is as follows:

x1 = C1() // Type parameter T gets value B
x2 = C1() // Type parameter T gets value E
x3 = X(x1, x2, p1=5, p2=1.5)

There are two variants of these tests, component and function invocation. In the former,
X = C4, and in the latter, X = F, where F is the function defined in the previous section.
Introduced errors are as follows:

Error description Code
Empty call arguments x3 = X()

Bare integer as argument x3 = X(1)

Invalid type for in-port x3 = X(x1, x1, p1=5, p2=1.5)

Missing connection to manda-
tory port

x3 = X(in2=x2, p1=5, p2=1.5)

Missing parameter value x3 = X(x1, x2, p2=1.5)

Elementary type for port x3 = X(x1, x2=9, p1=5, p2=1.5)

Double entry for port x3 = X(x1, in1=x1, p1=5, p2=1.5)

Double entry for parameter x3 = X(x1, x2, p1=5, p2=1.5, p2=1.5)

Parameter name omitted x3 = X(x1, x2, p1=5, 1.5)

Parameter before port x3 = X(x1, p1=5, x2, p2=1.5)

Invalid type for parameter x3 = X(x1, x2, p1=5, p2="abc")

Connection into parameter x3 = X(in1=x1, in2=x2, p1=5, p2=x1)

Missing expression for parame-
ter

x3 = X(in1=x1, in2=x2, p1=5, p2)

6.7 Other tests

VisualizerTest uses networks from TopologyTest and BranchTest to test the
GraphViz visualizer. See Javadocs for details.

	Introduction
	Architecture
	Component network
	Workflow execution
	Node states and the state file
	Network initialization and execution
	switch-case statements
	@bind annotations

	AndurilScript parser
	Symbol table
	Abstract syntax tree and conversion to network
	Implementing functions

	Unit testing the engine
	State initialization in various conditions
	State initialization for disabled nodes
	Network topology for nested functions
	Network topology for empty functions
	States in execution of switch-case statement
	Error check testing
	Function definition
	Invoking components and functions

	Other tests

