# ColumnStatistics

#### final class ColumnStatistics extends (Row) ⇒ Unit

Compute statistics for a numeric column.

Linear Supertypes
(Row) ⇒ Unit, AnyRef, Any
Ordering
1. Alphabetic
2. By inheritance
Inherited
1. ColumnStatistics
2. Function1
3. AnyRef
4. Any
1. Hide All
2. Show all
Visibility
1. Public
2. All

### Instance Constructors

1. #### new ColumnStatistics(column: Column, quantileLimit: Int, quantileEpsilon: Double)

Initialize for a given column.

Initialize for a given column.

column

The column object.

quantileLimit

Number of rows that is the threshold for computing exact quantiles. When there are more rows than this limit, an approximation algorithm is used for computing quantiles.

quantileEpsilon

Accuracy for computing approximate quantiles. The approximate quantiles will be within the given eplison of the real quantile. For example, with quantileEpsilon = 0.01, the median (quantile 0.5) is approximated as a quantile between 0.49 and 0.51. Approximate quantiles are disabled with quantileEpsilon = 0.

### Value Members

1. #### final def !=(arg0: AnyRef): Boolean

Definition Classes
AnyRef
2. #### final def !=(arg0: Any): Boolean

Definition Classes
Any
3. #### final def ##(): Int

Definition Classes
AnyRef → Any
4. #### final def ==(arg0: AnyRef): Boolean

Definition Classes
AnyRef
5. #### final def ==(arg0: Any): Boolean

Definition Classes
Any
6. #### def andThen[A](g: (Unit) ⇒ A): (Row) ⇒ A

Definition Classes
Function1
Annotations
@unspecialized()
7. #### def apply(row: Row): Unit

Add a new numeric value to the statistics.

Add a new numeric value to the statistics.

Definition Classes
ColumnStatistics → Function1
8. #### final def asInstanceOf[T0]: T0

Definition Classes
Any
9. #### def clone(): AnyRef

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws()
10. #### val column: Column

The column object.

11. #### def compose[A](g: (A) ⇒ Row): (A) ⇒ Unit

Definition Classes
Function1
Annotations
@unspecialized()
12. #### final def eq(arg0: AnyRef): Boolean

Definition Classes
AnyRef
13. #### def equals(arg0: Any): Boolean

Definition Classes
AnyRef → Any
14. #### def finalize(): Unit

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws()
15. #### def geometricMean(): Double

Return the geometric mean of values.

16. #### final def getClass(): Class[_]

Definition Classes
AnyRef → Any
17. #### def hashCode(): Int

Definition Classes
AnyRef → Any
18. #### final def isInstanceOf[T0]: Boolean

Definition Classes
Any
19. #### def max(): Double

Return the maximum of values.

20. #### def mean(): Double

Return the arithmetic mean of values.

21. #### def median(): Double

Return the median of values.

Return the median of values. This is equal to quantile(0.5).

22. #### def min(): Double

Return the minimum of values.

23. #### def missing(): Long

Return the number of missing values.

24. #### def n(): Long

Return the total number of non-missing values.

25. #### final def ne(arg0: AnyRef): Boolean

Definition Classes
AnyRef
26. #### final def notify(): Unit

Definition Classes
AnyRef
27. #### final def notifyAll(): Unit

Definition Classes
AnyRef
28. #### def quantile(quantile: Double): Double

Return the given quantile of values.

Return the given quantile of values. The quantile is exact if the number of observed rows is less than quantileLimit or approximate otherwise.

quantile

Quantile between 0 and 1.

29. #### val quantileEpsilon: Double

Accuracy for computing approximate quantiles.

Accuracy for computing approximate quantiles. The approximate quantiles will be within the given eplison of the real quantile. For example, with quantileEpsilon = 0.01, the median (quantile 0.5) is approximated as a quantile between 0.49 and 0.51. Approximate quantiles are disabled with quantileEpsilon = 0.

30. #### val quantileLimit: Int

Number of rows that is the threshold for computing exact quantiles.

Number of rows that is the threshold for computing exact quantiles. When there are more rows than this limit, an approximation algorithm is used for computing quantiles.

31. #### def sd(): Double

Return the standard deviation of values.

32. #### def sum(): Double

Return the sum of values.

33. #### final def synchronized[T0](arg0: ⇒ T0): T0

Definition Classes
AnyRef
34. #### def toString(): String

Definition Classes
ColumnStatistics → Function1 → AnyRef → Any
35. #### def variance(): Double

Return the variance of values.

36. #### final def wait(): Unit

Definition Classes
AnyRef
Annotations
@throws()
37. #### final def wait(arg0: Long, arg1: Int): Unit

Definition Classes
AnyRef
Annotations
@throws()
38. #### final def wait(arg0: Long): Unit

Definition Classes
AnyRef
Annotations
@throws()